Acessos em tempo real

segunda-feira, 30 de dezembro de 2013

Minas tem educação dentro da média do País segundo dados do Pisa



Apenas quatro redes de ensino estaduais brasileiras têm resultados superiores à média geral do Brasil, de acordo com dados do Programa Internacional de Avaliação de Alunos (Pisa, na sigla em inglês) de 2012. A rede de São Paulo, o Estado mais rico do País, fica abaixo do Brasil na média das áreas avaliadas.

Os dados desagregados pelas redes de cada Estado são do Instituto Nacional de Estudos e Pesquisas Educacionais (Inep), que trabalha com a Organização para a Cooperação e Desenvolvimento Econômico (OCDE) na realização do Pisa. A OCDE realiza a avaliação nos 34 países considerados de primeiro mundo e em outros convidados, como o Brasil.

Nesta última edição, o País ocupou 57.º lugar entre os 65 países participantes. O Brasil está entre os que mais cresceram em pontuação desde 2000, quando a prova foi criada, mas ainda não conseguiu sair das últimas posições. O índice geral leva em consideração as redes particular e pública. Quando separadas apenas as redes estaduais (que concentram 85% das matrículas do ensino médio, fase em que está a maioria dos alunos avaliados no Pisa), o cenário é mais preocupante. 

Até a rede estadual mais bem colocada no Pisa, a de Santa Catarina, com 422 pontos, ainda fica a 75 pontos de distância da média dos países ricos. A pontuação equivale a quase dois anos de aprendizado.

Fonte :http://www.estadao.com.br


segunda-feira, 28 de outubro de 2013

ENEM/2013 - FÍSICA - RESOLUÇÃO.

ENEM - 2013 / Física

Resolução da Prova Amarela

Questão 48:
Para realizar um experimento com uma garrafa PET cheia d'água, perfurou-se a lateral da garrafa em três posições a diferentes alturas. Com a garrafa tampada, a água não vazou por nenhum dos orifícios, e, com a garrafa destampada, observou-se o escoamento da água conforme ilustrado na figura.


Como a pressão atmosférica interfere no escoamento da água, nas situações com a garrafa tampada e destampada, respectivamente?

a) Impede a saída de água, por ser maior que a pressão interna; não muda a velocidade de escoamento, que só depende da pressão da coluna de água.
b) Impede a saída de água, por ser maior que a pressão interna; altera a velocidade de escoamento, que é proporcional à pressão atmosférica na altura do furo.
c) Impede a entrada de ar, por ser menor que a pressão interna; altera a velocidade de escoamento, que é proporcional à pressão atmosférica na altura do furo.
d) Impede a saída de água, por ser maior que a pressão interna; regula a velocidade de escoamento, que só depende da pressão atmosférica.
e) Impede a saída de água, por ser menor que a pressão interna; não muda a velocidade de escoamento, que só depende da pressão da coluna de água.

Resolução:

Com a garrafa tampada a pressão atmosférica (externa) é maior do que a pressão interna em cada furo, que é a pressão da coluna líquida. Deste modo, com a garrafa tampada, a água não vaza por nenhum dos orifícios.

Com a garrafa destampada a pressão atmosférica é menor do que a pressão interna em cada furo, que é a soma da pressão atmosférica com a pressão da coluna líquida, de acordo com a lei de Stevin. Deste modo, com a garrafa destampada, a água vaza pelos orifícios, devido à pressão da coluna de água. 

Resposta: a

Questão 53:
Uma manifestação comum das torcidas em estádios de futebol é a ola mexicana. Os espectadores de uma linha, sem sair do lugar e sem se deslocarem lateralmente, ficam de pé e se sentam, sincronizados com os da linha adjacente. O efeito coletivo se propaga pelos espectadores do estádio, formando uma onda progressiva, conforme ilustração.


Calcula-se que a velocidade de propagação dessa “onda humana” é 45 km/h e que cada período de oscilação contém 16 pessoas, que se levantam e sentam organizadamente distanciadas entre si por 80 cm.
Disponível em: www.ufsm.br. Acesso em 7 dez. 2012 (adaptado)

Nessa ola mexicana, a frequência da onda, em hertz, é um valor mais próximo de

a) 0,3.      b) 0,5.      c) 1,0.      d) 1,9.      e) 3,7.

Resolução:

Como cada período de oscilação contém 16 pessoas, concluímos que existem 15 espaços entre elas. Deste modo, o comprimento de onda é
  
λ = 15.80cm = 1200cm = 12 m.

Velocidade de propagação dessa "onda humana"

v = 45 km/h = (45/3,6)m/s = 12,5 m/s

Cálculo da frequência da onda:

v = λ.f => 12,5 = 12.f => f  1,0 Hz

Resposta: c

Questão 55:
Em viagens de avião, é solicitado aos passageiros o desligamento de todos os aparelhos cujo funcionamento envolva a emissão ou a recepção de ondas eletromagnéticas-. O procedimento é utilizado para eliminar fontes de radiação que possam interferir nas comunicações via rádio dos pilotos com a torre de controle.
A propriedade das ondas emitidas que justifica o procedimento adotado é o fato de

a) terem fases opostas.
b) serem ambas audíveis.
c) terem intensidades inversas.
d) serem de mesma amplitude.
e) terem frequências próximas.

Resolução:

Os pilotos dos aviões se comunicam com a torre de controle por meio de ondas de rádio. A utilização, por parte dos passageiros, de aparelhos como os telefones celulares, cujo funcionamento envolve a emissão ou a recepção de ondas eletromagnéticas, pode interferir nessa comunicação. A utilização de frequência próximas acentua o fenômeno da interferência de ondas.

Resposta: e

Questão 60:
Em um experimento, foram utilizadas duas garrafas PET, uma pintada de branco e a outra de preto, acopladas cada uma a um termômetro. No ponto médio da distância entre as garrafas, foi mantida acesa, durante alguns minutos, uma lâmpada incandescente. Em seguida, a lâmpada foi desligada. Durante o experimento, foram monitoradas as temperaturas das garrafas: a) enquanto a lâmpada permaneceu acesa e b) após a lâmpada ser desligada e atingirem equilíbrio térmico com o ambiente.


A taxa de variação da temperatura da garrafa preta, em comparação à da branca, durante todo experimento, foi

a) igual no aquecimento e igual no resfriamento
b) maior no aquecimento e igual no resfriamento.
c) menor no aquecimento e igual no resfriamento.
d) maior no aquecimento e menor no resfriamento.
e) maior no aquecimento e maior no resfriamento.

Resolução:

Enquanto a lâmpada permaneceu acesa a garrafa preta absorveu mais rapidamente energia radiante do que a garrafa branca. Portanto, a taxa de variação da temperatura da garrafa preta, em comparação à da branca, foi maior no aquecimento.
Após a lâmpada ser desligada, ambas resfriaram até  atingirem equilíbrio térmico com o ambiente. Mas todo bom absorvedor de energia radiante é também um bom emissor. Logo, a garrafa preta apresenta maior taxa de variação de temperatura no resfriamento.

Resposta: e

Questão 65:
Para oferecer acessibilidade aos portadores de dificuldades de locomoção, é utilizado, em ônibus e automóveis, o elevador hidráulico. Nesse dispositivo é usada uma bomba elétrica, para forçar um fluido a passar de uma tubulação estreita para outra mais larga, e dessa forma acionar um pistão que movimenta a plataforma.
Considere um elevador hidráulico cuja área da cabeça do pistão seja cinco vezes maior do que a área da tubulação que sai da bomba. Desprezando o atrito e considerando uma aceleração gravitacional de 10 m/s2, deseja-se elevar uma pessoa de 65 kg em uma cadeira de rodas de 15 kg sobre a plataforma de 20 kg.
Qual deve ser a força exercida pelo motor da bomba sobre o fluido, para que o cadeirante seja elevado com velocidade constante?

a) 20 N      b) 100 N      c) 200 N      d) 1000 N      e) 5000 N

Resolução:

Para o elevador hidráulico, de acordo com a Lei de Pascal, podemos escrever:

F2/A2 = F1/A1

Mas F2 = Peso total = massa total x g =(65+15+20).10 => F2 = 1000 N

Sendo A2 = 5.A1, vem:

1000/(5.A1) = F1/A1 => F1 = 200 N


Resposta: c

Questão 66:
Um eletricista analisa o diagrama de uma instalação elétrica residencial para planejar medições de tensão e corrente em uma cozinha. Nesse ambiente existem uma geladeira (G), uma tomada (T) e uma lâmpada (L), conforme a figura. O eletricista deseja medir a tensão elétrica aplicada à geladeira, a corrente total e a corrente na lâmpada. Para isso, ele dispõe de um voltímetro (V) e dois amperímetros (A).


Para realizar essas medidas, o esquema da ligação dessas instrumentos está representado em:


Resolução:

Para medir a tensão elétrica aplicada à geladeira deve-se ligar o voltímetro “em paralelo” com a geladeira, isto é, entre os fios fase e neutro.  A intensidade da corrente total é medida inserindo-se um amperímetro no fio fase ou no fio neutro, de modo a ficar "em série" com todos os aparelhos do circuito. A intensidade da corrente na lâmpada é obtida inserindo-se o outro amperímetro "em serie" com a lâmpada. Toda situação descrita encontra-se na alternativa e).

Resposta: e

Questão 67:
Desenvolve-se um dispositivo para abrir automaticamente uma porta no qual um botão, quando acionado, faz com que uma corrente elétrica i = 6 A percorra uma barra condutora de comprimento L = 5 cm, cujo ponto médio está preso a uma mola de constante elástica k = 5 x 10-2 N/cm. O sistema mola-condutor está imerso em um campo magnético uniforme perpendicular ao plano. Quando acionado o botão, a barra sairá da posição do equilíbrio a uma velocidade média de 5 m/s e atingirá a catraca em 6 milisegundos, abrindo a porta.


A intensidade do campo magnético, para que o dispositivo funcione corretamente, é de

a) 5 x 10-1 T.    b) 5 x 10-2 T.    c) 5 x 101 T.    d) 2 x 10-2 T.    e) 2 x 100 T.

Resolução:

Pela regra da mão direita determinamos o sentido da força magnética que age na barra. Na figura representamos também a força exercida pela mola na barra (força elástica):

Embora não esteja explicito no enunciado, vamos impor que ao atingir a catraca a força magnética seja equilibrada pela força elástica. Entre suas intensidades temos:

Fmag = Fel => Bil = kx => Bil = k.vm.Δt => 
B.6.5.10-2 = 5.5.6.10-3 => 
B = 5.10-1 T

Resposta: a

Questão 69:
Para serrar os ossos e carnes congeladas, um açougueiro utiliza uma serra de fita que possui três polias e um motor. O equipamento pode ser montado de duas formas diferentes, P e Q. Por questão de segurança, é necessário que a serra possua menor velocidade linear.


Por qual montagem o açougueiro deve optar e qual a justificativa desta opção?

a) Q, pois as polias 1 e 3 giram com velocidades lineares iguais em pontos periféricos e a que tiver maior raio terá menor frequência.
b) Q, pois as polias 1 e 3 giram com frequência iguais e a que tiver maior raio terá menor velocidade linear em um ponto periférico.
c) P, pois as polias 2 e 3 giram com frequências diferentes e a que tiver maior raio terá menor velocidade linear em um ponto periférico.
d) P, pois as polias 1 e 2 giram com diferentes velocidades lineares em pontos periféricos e a que tiver menor raio terá maior frequência.
e) Q, pois as polias 2 e 3 giram com diferentes velocidades lineares em pontos periféricos e a que tiver maior raio terá menor frequência.

Resolução:

Por uma questão de segurança, a serra de fita deve possuir a menor velocidade linear. De v = ω.R, concluímos que menor valor de v implica no menor valor de R e menor valor de ω
O menor valor de R ocorre para a serra de fita sendo movimentada pela polia 2.

Por outro lado, o menor valor de ω ocorre na transmissão do movimento circular da polia 1 (do motor) para a polia 3 (que é a de maior raio). Este fato é demonstrado considerando que as polias 1 e 3 giram com velocidades lineares iguais em pontos periféricos:

v1 = v3 => ωmotor.Rpolia1 ω.Rpolia3 (R maior => ω menor).

Note que a velocidade angular da polia 3 é a mesma que a da polia 2 (mesmo eixo).
Por último, de ω = 2.π.f concluímos que a polia 3, por ter o menor valor de ω  terá menor frequência. Portanto:
Polia do motor ligada à polia 3 e serra de fita movimentada pela polia 1 é a situação indicada pela montagem Q.

Resposta: a

Questão 76:
Aquecedores solares usados em residências têm o objetivo de elevar a temperatura da água até 70°C. No entanto, a temperatura ideal da água para um banho é de 30°C. Por isso, deve-se misturar a água aquecida com a água à temperatura ambiente de um outro reservatório, que se encontra a 25°C.
Qual a razão entre a massa de água quente e a massa de água fria na mistura para um banho à temperatura ideal?

a) 0,111.      b) 0,125.      c) 0,357.      d) 0,428.      e) 0,833.

Resolução:

No reservatório A, que contem água a 70 ºC temos:
massa de água: mA
temperatura inicial: 70 ºC
temperatura final: 30 ºC

No reservatório B, que contém água a 25 ºC, temos:
massa de água: mB
temperatura inicial: 25 ºC
temperatura final: 30 ºC

Ao misturarmos o conteúdo dos recipientes A e B, haverá troca de calor e a somatória dos calores envolvidos será nula. Assim:

QA + QB = 0
mA.c.(30-70) + mB.c.(30-25) = 0
mA.40 = mB.5
mA/mB = 5/40 => mA/mB = 0,125

Resposta: b

Questão 79:
Em um dia sem vento, ao saltar de um avião, um paraquedista cai verticalmente até atingir a velocidade limite. No instante em que o paraquedas é aberto (instante TA), ocorre a diminuição de sua velocidade de queda. Algum tempo após a abertura do paraquedas, ele passa a ter velocidade de queda constante, que possibilita sua aterrissagem em segurança. Que gráfico representa a força resultante sobre o paraquedista, durante o seu movimento de queda?


Resolução:

No início do movimento a forças que agem no paraquedista são o peso e a força de resistência do ar. 
Assim, a força resultante sobre o paraquedista tem direção vertical e orientação para baixo. Mas a medida que a velocidade aumenta a intensidade da força de resistência do ar aumenta, reduzindo a intensidade da forca resultante. Essa se anula no momento em que o paraquedista atinge a velocidade limite.
No instante TA, o paraquedas se abre. A forca resultante passa a ter uma intensidade elevada, mas agora orientada para cima. A velocidade diminui, até que a força resultante se anule e o paraquedista passa a ter velocidade de queda constante, que possibilita sua aterrissagem em segurança. 
Considerando-se a força resultante para baixo de valor algébrico positivo e para cima, negativo, a alternativa é a b)

Resposta: b

Questão 81:
O chuveiro elétrico é um dispositivo capaz de transformar energia elétrica em energia térmica, o que possibilita a elevação da temperatura da água. Um chuveiro projetado para funcionar em 110 V pode ser adaptado para funcionar em 220 V, de modo a manter inalterada sua potência.
Uma das maneiras de fazer essa adaptação é trocar a resistência do chuveiro por outra, de mesmo material e com o(a)

a) dobro do comprimento do fio.
b) metade do comprimento do fio.
c) metade da área da seção reta do fio.
d) quádruplo da área da seção reta do fio.
e) quarta parte da área da seção reta do fio.

Resolução:

Seja R1 a resistência elétrica do chuveiro projetado para funcionar sob tensão U1 = 110 V e R2 sua resistência elétrica sob tensão U2 = 220 V. Mantendo inalterada a potência, podemos escrever:

(U1)2/R1 = (U2)2/R2 => (110)2/R1 = (220)2/R2 = R2/R1 = (220/110)2 =>
R2 = 4.R1

A nova resistência elétrica do chuveiro deve ser quatro vezes maior. Da segunda lei de Ohm: R = ρL/A, concluímos que para o mesmo material (mesmo ρ), podemos quadruplicar a resistência elétrica quadruplicando o comprimento L do fio ou reduzindo de quatro vezes a área da seção reta do fio

Resposta: e

Questão 82:
Uma pessoa necessita da força de atrito em seus pés para se deslocar sobre uma superfície. Logo, uma pessoa que sobe uma rampa em linha reta será auxiliada pela força de atrito exercida pelo chão em seus pés. Em relação ao movimento dessa pessoa, quais são a direção e o sentido da força de atrito mencionada no texto?

a) Perpendicular ao plano e no mesmo sentido do movimento.
b) Paralelo ao plano e no sentido contrário ao movimento.
c) Paralelo ao plano e no mesmo sentido do movimento.
d) Horizontal e no mesmo sentido do movimento.
e) Vertical e sentido para cima.

Resolução:

A pessoa ao subir a rampa exerce no chão uma força de atrito para trás (-Fat). Pelo princípio da ação e reação o chão exerce na pessoa outra força de sentido contrário (Fat) e portanto para frente, isto é, no sentido do movimento. A direção da força é paralela ao plano de apoio da pessoa:


Resposta: c

Questão 84:
Medir temperatura é fundamental em muitas aplicações, e apresentar a leitura em mostradores digitais é bastante prático. O seu funcionamento é baseado na correspondência entre valores de temperatura e diferença de potencial elétrico. Por exemplo, podemos usar o circuito elétrico apresentado, no qual o elemento sensor de temperatura ocupa um dos braços do circuito (RS) e a dependência da resistência com a temperatura é conhecida.


Para um valor de temperatura em que RS = 100 Ω, a leitura apresentada pelo voltímetro será de

a) + 6,2 V.     b) + 1,7 V.     c) + 0,3 V.     d) – 0,3 V.     e) – 6,2 V

Resolução:

Vamos supor o voltímetro ideal e calcular as intensidades das correntes i1 e i2.


i1 = 10/(470+100) => i1 = 1/57 A
i2 = 10/(470+120) => i2 = 1/59 A

VB - VC = 100.(1/57) = 100/57 => VB - VC  1,75 V (1)
VD - VC = 120.(1/59) = 120/59 => VD - VC  2,03 V (2)

Subtraindo membro a membro (1) e (2) obtemos VVD que é a leitura do voltímetro:

VB - VD  1,75 - 2,03 => VB - VD  -0,28 V => VB - VD  -0,3 V

Resposta: d

Questão 87:
Um circuito em série é formado por uma pilha, uma lâmpada incandescente e uma chave interruptora. Ao se ligar a chave, a lâmpada acende quase instantaneamente, irradiando calor e luz. Popularmente, associa-se o fenômeno da irradiação de energia a um desgaste da corrente elétrica, ao atravessar o filamento da lâmpada, e à rapidez com que a lâmpada começa a brilhar. Essa explicação está em desacordo com o modelo clássico de corrente.
De acordo com o modelo mencionado, o fato de a lâmpada acender quase instantaneamente está relacionado à rapidez com que

a) o fluido elétrico se desloca no circuito.
b) as cargas negativas móveis atravessam o circuito.
c) a bateria libera cargas móveis para o filamento da lâmpada.
d) o campo elétrico se estabelece em todos os pontos do circuito.
e) as cargas positivas e negativas se chocam no filamento da lâmpada.

Resolução:

Ao se fechar o circuito as cargas elétricas que constituem a corrente elétrica entram em movimento praticamente no mesmo instante, ao longo de todo circuito. Isso ocorre pois o campo elétrico se estabelece quase instantaneamente em todos os pontos do circuito.

Resposta: d

Questão 90:
Em um piano, o Dó central e a próxima nota Dó (Dó maior) apresentam sons parecidos, mas não idênticos. É possível utilizar programas computacionais para expressar o formato dessas ondas sonoras em cada uma das situações como apresentado nas figuras, em que estão indicados intervalos de tempo idênticos (T).


A razão entre as frequências do Dó central e do Dó maior é de:

a) 1/2     b) 2     c) 1     d)     e) 4

Resolução:

Para o Dó central, o intervalo de tempo T corresponde a um período: 
T = 1.TDC 
Mas para o Dó maior o intervalo de tempo T corresponde a dois períodos: 
T = 2.TDM
Portanto: TDC = 2.TDM => 1/fDC = 2.(1/fDM) => 
1/fDC = 2/fDM => fDC/fDM = 1/2

Resposta: a

Fonte : http://osfundamentosdafisica.blogspot.com.br/

segunda-feira, 26 de agosto de 2013

Corrente Elétrica.




CORRENTE ELÉTRICA
Conceito
A corrente elétrica é um fluxo de elétrons que circula por um condutor quando entre suas extremidades houver uma diferença de potencial. Esta diferença de potencial chama-se tensão. A facilidade ou dificuldade com que a corrente elétrica atravessa um condutor é conhecida como resistência. Esses três conceitos: corrente, tensão e resistênca, estão relacionados entre si, de tal maneira que, conhecendo dois deles, pode-se calcular o terceiro através da Lei de Ohm
Os elétrons e a corrente elétrica não são visíveis mas podemos comprovar sua existência conectando, por exemplo, uma lâmpada a uma bateria. Entre os terminais do filamento da lâmpada existe uma diferença de potencial causada pela bateria, logo, circulará uma corrente elétrica pela lâmpada e portanto ela irá brilhar.
A relação existente entre a corrente, a tensão e a resistência denomina-se Lei de Ohm: Para que circule uma corrente de 1A em uma resistência de 1 Ohm, há de se aplicar uma tensão em suas extremidades de 1V (V=R.I).
O conhecimento desta lei e o saber como aplicá-la são os primeiros passos para entrar no mundo da eletricidade e da eletrônica.
Antes de se começar a realizar cálculos, há que se conhecer as unidades de medida. A tensão é medida em Volts (V), a corrente é medida em Amperes (A) e a resistência em Ohms (ohm)

Unidades Básicas


SímboloUnidade
Aampère (unidade de corrente)
Vvolt (unidade e tensão)
Wwatt (unidade de potência)
OhmOhm (unidade de resistência)
Hhenry (unidade de indutância)
Ffarad (unidade de capacitância)
Hzhertz (unidade de freqüência)

Prefixos para indicar frações ou múltiplos de unidades


SímboloFração/Múltiplo
ppico (1 trilionésimo 10E-12)
nnano (1 bilionésimo 10E-9)
µmicro (1 milionésimo 10E-6)
mmili (1 milésimo 10E-3)
kkilo (1 milhar 10E3)
Mmega (1 milhão 10E6)
Ggiga (1 bilhão 10E9)

Por: Christiano Cesa
Conceito

A corrente elétrica consiste no movimento ordenado de cargas elétricas, através de um condutor elétrico. A corrente elétrica é definida como corrente elétrica real (sentido do movimento dos elétrons) e corrente elétrica convencional (consiste no movimento de cargas positivas).
Condutor é todo material que permite a mobilidade fácil dos elétrons, sendo os melhores condutores os metais. Quando o material não permite essa mobilidade dos elétrons , ele é dito isolante, por exemplo madeira.
Há dois tipos de corrente elétrica: corrente contínua - gerada por pilhas e baterias e corrente alternada - gerada por usinas que transformam qualquer tipo de energia em elétrica, a qual chega até nossas casas. A corrente elétrica que circula através dos resistores, pode transformar energia elétrica em energia térmica, sob efeito joule.
Fonte : http://www.mundovestibular.com.br/articles/757/1/CORRENTE-ELETRICA/Paacutegina1.html



Hidrostática.

Hidrostática
hidrostática é a parte da física que estuda os líquidos e os gases em repouso, sob ação de um campo gravitacional constante, como ocorre quando estamos na superfície da Terra.
As leis que regem a hidrostática estão presentes no nosso dia-a-dia, mais do que podemos imaginar. Elas se verificam, por exemplo, na água que sai da torneira das nossas residências, nas represas das hidrelétricas que geram a energia elétrica que utilizamos e na pressão que o ar está exercendo sobre você nesse exato momento.
Para entender essas leis, é preciso compreender primeiramente o conceito de pressão.

Pressão

A grandeza física determinada pelo quociente entre uma força aplicada e a área de ação dessa força recebe o nome de pressão.
É o que se vê na figura abaixo:
Hidrostática
De acordo com o Sistema Internacional de Pesos e Medidas, a unidade de medida da pressão é o pascal (pa), mas é muito comum usar-se também a atmosfera (atm)e o milímetro de mercúrio (mmHg).
Hidrostática

Pressão hidrostática

Ao mergulharmos em uma piscina, a água irá exercer uma pressão sobre nós. Quanto mais fundo mergulharmos, maior será essa pressão. Agora, imagine que o líquido contido pela piscina não seja água, mas outro mais denso.
Nessa situação, a pressão vai aumentar, pois o peso do líquido sobre nós também será maior. E, se estamos falando de peso, é porque a força da gravidade, que o compõe, influencia a pressão exercida pelo líquido, também chamada de pressão hidrostática.
A partir disso, é possível concluir que a pressão hidrostática depende da profundidade, da densidade do líquido e da gravidade local.
A pressão hidrostática é determinada pela seguinte expressão matemática:
Hidrostática
Onde:
d é a densidade do liquido
g é a aceleração da gravidade
h é a profundidade
Esta equação foi publicada pela primeira vez em 1586, pelo físico holandês Simão Stevin. Por isso fico conhecida como lei de Stevin.
Uma conseqüência importante de lei de Stevin é o fato de a pressão hidrostática não depender da área de contato do líquido.
Observe a seguinte figura:
Hidrostática
Apesar de os recipientes terem bases com áreas diferentes, essas bases estão submetidas à mesma pressão, pois os dois líquidos estão com a mesma altura, ou seja:
Hidrostática

Princípio de Pascal

Se você está dirigindo e depara com o sinal fechado, coloca o pé no freio. O carro pára. Para a física, o que isso significa? Significa que é possível parar um objeto que tem uma massa de uma tonelada ou mais, com um esforço mínimo - o do seu pé sobre o pedal do freio.
Isso ocorre porque a força que é transmitida para o sistema de freios é a força que você exerceu no pedal multiplicada muitas vezes.
A explicação desse fenômeno é o princípio de Pascal, que pode ser enunciado da seguinte forma:
"Em equilíbrio, os líquidos que não podem ser comprimidos transmitem integralmente a pressão por eles recebida".
Um exemplo que pode esclarecer melhor esse princípio é o da prensa hidráulica.
Considere um cilindro que é constituído por extremidades com áreas diferentes. Seu interior é preenchido por um líquido e o cilindro é fechado por dois êmbolos (em vermelho, na imagem abaixo) que podem deslizar.
Hidrostática
Se aplicarmos uma força sobre a área 1, estaremos exercendo uma pressão nesse local, e pelo Princípio de Pascal, essa pressão será transmitida integralmente para a área 2.
Hidrostática
Ou seja, a força transmitida para a área 2 é 100 vezes maior que a força transmitida a área 1.

O princípio de Arquimedes

Considere um objeto que está suspenso no ar por um dinamômetro que indica o valor do seu peso. Em seguida, mergulha-se o mesmo objeto em um recipiente que contém um líquido em seu interior. Nessa segunda situação, o mesmo objeto terá um peso menor.
Hidrostática
P2 é menor do que P1 pelo fato de o líquido exercer forças por toda a extensão do objeto, como se vê a seguir:
Hidrostática
Na figura acima, é importante observar que:
a) as forças F3 e F4 se anulam, pois são simétricas;
b) a intensidade da força F2 é maior que a intensidade da força F1, porque a pressão exercida pelo líquido na parte inferior do objeto é maior que a pressão exercida na parte superior (de acordo com a Lei de Stevin).
Essa diferença irá resultar numa força vertical e dirigida para cima, que é conhecida como empuxo. O empuxo pode ser determinado pela equação:
Hidrostática
Segundo o princípio de Arquimedes, a intensidade do empuxo é igual ao peso do fluido deslocado pelo objeto imerso:
Hidrostática
Onde:
PFD é peso do fluido deslocado.
mFD é a massa do fluido deslocado.
dFD é a densidade do fluido deslocado.
VFD é o volume do fluido deslocado.
É importante salientar que, ao falarmos de fluidos, estamos nos referindo a líquidos e gases. Ou seja, o empuxo não é uma exclusividade dos líquidos, os gases também podem exercê-lo.
Paulo Augusto Bisquolo
Fonte: educacao.uol.com.br
Hidrostática
Chamamos hidrostática a ciência que estuda os líquidos em equilíbrio estático.

Fluido

Fluido é uma substância que tem a capacidade de escoar. Quando um fluido é submetido a uma força tangencial, deforma-se de modo contínuo, ou seja, quando colocado em um recipiente qualquer, o fluido adquire o seu formato.
Podemos considerar como fluidos líquidos e gases.
Particularmente, ao falarmos em fluidos líquidos, devemos falar em sua viscosidade, que é a atrito existente entre suas moléculas durante um movimento. Quanto menor a viscosidade, mais fácil o escoamento do fluido.

Pressão

Ao observarmos uma tesoura, vemos que o lado onde ela corta, a lâmina, é mais fina que o restante da tesoura. Também sabemos que quanto mais fino for o que chamamos o "fio da tesoura", melhor esta irá cortar.
Isso acontece, pois ao aplicarmos uma força, provocamos uma pressão diretamente proporcional a esta força e inversamente proporcional a área da aplicação.
No caso da tesoura, quanto menor for o "fio da tesoura" mais intensa será a pressão de uma força nela aplicada.
A unidade de pressão no SI é o Pascal (Pa), que é o nome adotado para N/m².
Matematicamente, a pressão média é igual ao quociente da resultante das forças perpendiculares à superfície de aplicação e a área desta superfície.
Hidrostática
Sendo:
p= Pressão (Pa)
F=Força (N)
A=Área (m²)

Densidade

Quando comparamos dois corpos formados por materiais diferentes, mas com um mesmo volume, quando dizemos que um deles é mais pesado que o outro, na verdade estamos nos referindo a sua densidade. A afirmação correta seria que um corpo é mais denso que o outro.
A unidade de densidade no SI é kg/m³.
A densidade é a grandeza que relaciona a massa de um corpo ao seu volume.
Hidrostática
Onde:
d=Densidade (kg/m³)
m=Massa (kg)
V=Volume (m³)
Exemplo:
Qual a massa de um corpo de volume 1m³, se este corpo é feito de ferro?
Dado: densidade do ferro=7,85g/cm³
Convertendo a densidade para o SI:
Hidrostática
Hidrostática
Hidrostática